The correct option is A −cos(x)3(1+sin2(x))+C
The given relation is nothing but the reduction formula for sin(x). We’ll use the the above formula for n = 3.
So, ∫sin3 (x) dx=−sin2(x).cos(x)3+13 ∫sin (x) dx
∫sin3 (x) dx=−sin2(x).cos(x)3−13 cos(x)+C (Using ∫sin (x) dx=−cos(x))
Or −cos(x)3(1+sin2(x))+C