If the remainder when x3+2x2+kx+3 is divided by x-3 is 21, find the zeroes of x3+2x2+kx−18
Solution: P(3) = 48 + 3k =21
⇒ K =-9
Hence, x3+2x2−9x+3=(x−3) x Quotient + 21
⇒x3+2x2−9x−18=9x−3) x Quotient
⇒ Quotient = x3+2x2−9x−18x−3
x2+5x+6x−3x3+2x2−9x−18x3−2x2–––––––––2 5x2−9x 5x2−15x––––––––––– 6x−18 6x−18––––––––– −5
Factorizing the quotient, x2+5x+6=x2+3x+2x+6=x(x+3)+2(x+3)=(x+2)(x+3)
Hence, the factors of x3+2x2−9x−18 are x−3, x+2 and x+3
⇒ the zeroes are -3,-2,3.