wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the root of the equation x2+px+q=0 differ from the roots of the equation x2+qx+p=0 by the same quantity then find the condition.

Open in App
Solution

We have,

x2+px+q=0......(1)

x2+qx+p=0......(2)

Letαandβ be the roots of equation (1)

then,

Sumofrootsα+β=p1=p

Productofrootsα×β=q1=q

Then,

differnceofroots

(αβ)2=(α+β)24αβ

(αβ)2=(p)24q

(αβ)=p24q

Let α1andβ1 be the roots of equation (2)

sumofrootsα1+β1=q1=q

Productofrootsα1.β1=p1=p

Then,

differnceofroots

(α1β1)2=(α1+β1)24α1β1

(α1β1)2=(q)24p

(α1β1)=q24p

According to given question,

(αβ)=(α1β1)

p24q=q24p

p24q=q24p(Squaringbothside)

p2q2=4q4p

(p+q)(pq)=4(qp)

p+q=4

p+q+4=0

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Harmonic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon