Given quadratic equation is
(a−b)x2+(b−c)x+(c−a)=0
Since the root are equal, discriminent of the quadritic equation = 0
Hence(b−c)2=4(a−b)(c−a)⇒b2+c2−2bc=4(ac−a2−bc+ab)⇒b2+c2−2bc=4ac−4a2−4bc+4ab⇒b2+c2−2bc−4ac+4a2+4bc−4ab⇒b2+c2+4a2+2bc−4ac−4ab=0⇒b2+c2+(−2a)2+2(b)(c)+2(−2a)c+2(−2a)b=0⇒(b+c−2a)2=0⇒b+c−2a=0∴b+c=2a
Hece a,b and c are in AP.