10x3−nx2−54x−27=0 has roots in H.P.
Putting x=1t
27t3+54t2+nt−10=0⋯(1)
So the roots are in A.P.
Let the roots be a−d,a,a+d
Sum of roots
a−d+a+a+d=−5427⇒3a=−2⇒a=−23
As a is one of the root of the equation (1), putting a=−23 in the equation (1), we get
27×(−827)+54×(49)+n×(−23)−10=0⇒−8+24−2n3−10=0⇒2n3=6∴n=9