(a2+b2)x2−2(ac+bd)x+(c2+d2)=0
Comparing with Ax2+Bx+C=0
A=(a2+b2), B=−2(ac+bd), C=(c2+d2)
For equal roots, B2−4AC=0
(−2(ac+bd))2−4(a2+b2)(c2+d2)=0
4(a2c2+2abcd+b2d2)−4(a2c2+a2d2+b2c2+b2d2)=0, divide by 4 to get
a2c2+2abcd+b2d2−a2c2−a2d2−b2c2−b2d2=0
2abcd−a2d2−b2c2=0, Multiply by -1 to get,
a2d2−2abcd+b2c2=0
(ad−bc)2=0, Take square root on both sides to get,
ad−bc=0
ad=bc
ab=cd