Given quadratic equation,
a(b−c)x2+b(c−a)x+c(a−b)=0
Zeros of the given equation are equal.
So, discriminant =0
b2−4ac=0
[b(c−a)]2−4[a(b−c)⋅c(a−b)]=0
b2(c2+a2−2ac)−4[(ab−ac)(ac−cd)]=0
b2c2+a2b2−2ab2c−4[a2bc−ab2c−a2c2+abc2]=0
b2c2+a2b2+2abc−4a2bc+4ab2c+4a2c2−4abc2=0
b2c2+a2b2+2ab2c−4a2bc+4a2c2−4abc2=0
We know that,
a2+b2+c2+2ab+2bc+2ca=(a+b+c)2
By above identity we get,
[bc+ab−2ac]2=0
bc+ab−2ac=0
b(c+a)=2ac
c+aac=2b
⇒cac+aac=2b
∴2b=1a+1c.