1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Distance Formula
If the roots ...
Question
If the roots of the equation
a
2
+
b
2
x
2
-
2
a
c
+
b
d
x
+
c
2
+
d
2
=
0
are equal, prove that
a
b
=
c
d
.
Open in App
Solution
It is given that the roots of the equation
a
2
+
b
2
x
2
-
2
a
c
+
b
d
x
+
c
2
+
d
2
=
0
are equal.
∴
D
=
0
⇒
-
2
a
c
+
b
d
2
-
4
a
2
+
b
2
c
2
+
d
2
=
0
⇒
4
a
2
c
2
+
b
2
d
2
+
2
a
b
c
d
-
4
a
2
c
2
+
a
2
d
2
+
b
2
c
2
+
b
2
d
2
=
0
⇒
4
a
2
c
2
+
b
2
d
2
+
2
a
b
c
d
-
a
2
c
2
-
a
2
d
2
-
b
2
c
2
-
b
2
d
2
=
0
⇒
-
a
2
d
2
+
2
a
b
c
d
-
b
2
c
2
=
0
⇒
-
a
2
d
2
-
2
a
b
c
d
+
b
2
c
2
=
0
⇒
a
d
-
b
c
2
=
0
⇒
a
d
-
b
c
=
0
⇒
a
d
=
b
c
⇒
a
b
=
c
d
Hence Proved.
Suggest Corrections
0
Similar questions
Q.
(i) If the roots of the equation
a
2
+
b
2
x
2
-
2
a
c
+
b
d
x
+
c
2
+
d
2
=
0
are equal, prove that
a
b
=
c
d
. [CBSE 2017]
(ii) If ad ≠ bc then prove that the equation
a
2
+
b
2
x
2
+
2
a
c
+
b
d
x
+
c
2
+
d
2
=
0
has no real roots. [CBSE 2017]
Q.
If the equations
a
2
+
b
2
x
2
-
2
a
c
+
b
d
x
+
c
2
+
d
2
=
0
has equal roots, then
(a) ab = cd
(b) ad = bc
(c)
a
d
=
b
c
(d)
a
b
=
c
d