Given, the roots of both the equations are real.
First equation:
ax2+2bx+c=0
Its discriminant, D≥0
⇒ (2b)2−4(ac)≥0
⇒ 4b2−4ac≥0
⇒ 4b2≥4ac
⇒ b2≥ac ... (1)
Second equation:
bx2−2√acx+b=0
Its discriminant, D≥0
⇒ (2√ac)2−4(b2)≥0
⇒ 4ac−4b2≥0
⇒ 4ac≥4b2
⇒ ac≥b2... (2)
The results of equation (1) and (2) are simultaneously possible in only one case when b2=ac.