The correct option is
C 1α2+αβ,1β2+αβGiven:
α,β are roots of the equation
ax2−bx+c=0
Solution:
From the equation ax2−bx+c=0
α+β=ba,αβ=ca
Now the second equation b2cx2−ab2x+a3=0 is of the form ax2+bx+c=0 where a=b2c,b=−ab2,c=a3,
and its roots can be written as
⇒x=−b±√b2−4ac2a
⇒x=ab2±√(−ab2)2−4(b2c)(a3)2(b2c)
⇒x=ab2±√a2b4−4a3b2c2(b2c)
Divide the above equation throughout with a2b, we get
x=ab2a2b±1a2b√a2b4−4a3b2c2b2ca2b
⇒x=ba±√a2b4−4a3b2ca4b22baca
⇒x=ba±√(ba)2−4ca2baca
Substitute the values of ba,ca, we get
x=α+β±√(α+β)2−4αβ2(α+β)(αβ)
⇒x=α+β±√α2+β2+2αβ−4αβ2(α+β)(αβ)
⇒x=α+β±√α2+β2−2αβ2(α+β)(αβ)
⇒x=α+β±√(α−β)22(α+β)(αβ)
So the roots are
x=α+β+(α−β)2(α+β)(αβ),x=α+β−(α−β)2(α+β)(αβ)
⇒x=1β2+αβ,1α2+αβ