The correct option is C mnb2=ac(m+n)2
Given: Roots of the equation ax2+bx+c=0 are in the ratio m:n
Let roots be α,β
α+β=−ba, α.β=ca, αβ=mn
Using componendo and dividendo in αβ=mn
⇒α+βα−β=m+nm−n⇒(α+β)2(α+β)2−4αβ=(m+n)2(m+n)2−4mn⇒4αβ(α+β)2=4mn(m+n)2⇒c/ab2/a2=mn(m+n)2⇒ac(m+n)2=mn b2