Given, (b-c)x2 + (c - a)x + (a - b) = 0
Comparing given equation with general form Ax3+Bx+C=0
We get, A=(b−c),B=(c−a),D=(a−b)
If roots are equal then discriminant is equal to zero.
That is, D=B2−4AC=0
Therefore,
(c−a)2=4(a−b)(b−c)
c2+a2−2ac = 4 {ab - ac −b2 + bc}
c2+a2−2ac = 4ab - 4ac - 4b2 + 4bc
a2+4b2+c2+2ac−4ab−4bc=0
(a−2b−c)2 = 0
a−2b+c=0
a+c=2b
b=a+c2
This means a,b & c are in A.P.
Hence, proved.