If the roots of the equation (c2−ab)x2−2(a2−bc)x+(b2−ac)=0 be equal, prove that either a=0 or a3+b3+c3+=3abc.
Open in App
Solution
(c2−ab)x2−2(a2−bc)x+(b2−ac)=0 If the roots be equal, then B2−4AC=0 ∴4(a2−bc)2−4(c2−ab)(b2−ac)=0 or [a4−2a2bc+b2c2]−[b2c2−ab3−ac3+a2bc]=0 or a[a3+b3+c3+−3abc]=0 ∴ Either a−0 or a3+b3+c3−3abc=0.