We have,
1x+a+1x+b=1c
⇒x+b+x+a(x+a)(x+b)=1c
⇒2x+b+ax2+ax+bx+ab=1c
⇒2xc+bc+ca=x2+ax+bx+ab
⇒x2+ax+bx+ab=2xc+bc+ca
⇒x2+(a+b−2c)x+(ab−bc−ca)=0
Sum of roots =−coeff.ofxcoeff.ofx2=−(a+b−2c)1=2c−a−b
According to given,
Sum of roots =0
2c−a−b=0
a+b=2c
Product of roots =constanttermcoeff.ofx2=ab−bc−ca1=ab−bc−ca
Product of roots =
ab−bc−ca
=ab−c(b+a)
=ab−c(2c)
=ab−2c2
Hence, this is the
answer.