If the roots of the equation 8x3−4x2−4x+1=0 are cosπ7,cos3π7,cos5π7, then show that secπ7+sec3π7+sec5π7=4 .
Open in App
Solution
As cosπ7,cos3π7,cos5π7 are roots of 8x3−4x2−4x+1=0 Then 1cosπ7,1cos3π7,1cos5π7 are roots of equation which we get by replacing x→1x ∴8(1x)3−4(1x)2−4(1x)+1=0⇒8−4x−4x2+x3=0 Hence sum of roots =4 ∴1cosπ7+1cos3π7+1cos5π7=4 ⇒secπ7+sec3π7+sec5π7=4