If the roots of the equation (b−c)x2+(c−a)x+(a−b)=0 are equal then prove that 2b = a + c
Open in App
Solution
If the roots of the given equation are equal then discriminant is zero i. e. (c−a)2−4(b−c)(a−b)=0 ⇒c2+a2−2ac+4b2−4ab+4ac−4bc=0 ⇒c2+a2+4b2+2ac−4ab−4bc=0 ⇒(c+a−2b)2=0 ⇒c+a=2b