If the roots of the equation λ2+8λ+μ2+6μ=0 are real, then μ lies between
For real roots the discriminant must be non-negative,
D>0
82−4(μ2+6μ)>0
16−μ2−6μ>0
μ2+6μ−16<0
(μ−2)(μ+8)<0
−8≤μ≤2