If the roots of the equation (1−q+p22)x2+p(1+q)x+q(q−1)+p22=0 are equal, then
A
p2=8q
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
p2=2q
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
p2=4q
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
p2=q
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cp2=4q As roots are equal, so Δ=0 ⇒p2(1+q)2=4(1−q+p22)(q(q−1)+p22) ⇒p2(1+q)2=(4(1−q)+2p2)(q(q−1)+p22) ⇒p2(1+q)2=−4q(1−q)2+2p2q(q−1)+2p2(1−q)+p4 ⇒p2(1+q)2−2p2q(q−1)−2p2(1−q)−p4=−4q(1−q)2 ⇒p2[(1+q)2−2q2+4q−2−p2]=−4q(1−q)2 ⇒p2[−(1−q)2+(4q−p2)]=4q(1−q)2 ⇒−p2(1−q)2+p2(4q−p2)=−4q(1−q)2 ⇒(1−q2)(−p2+4q)+p2(4q−p2)=0 ⇒(−p2+4q)[(1−q)2+p2]=0 As (1−q)2+p2≠0, −p2+4q=0 ∴p2=4q