If the roots of the equation (1−q+p22)x2+p(1+q)x+q(q−1)+p22=0 are equal, then
If ∝, β are the roots of x2 + px + 1 = 0, γ, δ the roots of x2 + qx + 1 = 0, then (∝ - γ)( β -γ)(∝+ δ)( β +δ) =
If tan A, tan B are the roots of x2−Px+Q=0 the value of sin2 (A+B)=(where P, Q ϵ R)