If the roots of the equation (b−c)x2+(c−a)x+(a−b)=0 are equal, then a,b,c will be in-
(b-c)x²+(c-a)x+(a-b)=0
Comparing with quadratic equation
Ax²+Bx+C=0
A=(b-c),B=c-a,C=a-b
Discriminant is eqwual to zero when roots are equal
D=B²-4AC=0
D=(c-a)²−4(b-c)(a-b)=0
D=(c²+a²−2ac)-4(ba-ac-b²+bc)=0
D=c²+a²−2ac-4ab+4ac+4b²-4bc=0
c²+a²+2ac-4b(a+c)+4b²=0
(a+c)²-4b(a+c)+4b²=0
[(a+c)-2b]²=0
a+c=2b,
Thus, a , b, c are in A.P.