Consider the given equation
px2+qx+r=0 ratio =l:m
Let lα and mα be the roots given equation
Then, we know that,
sumsofroots=−cofficentsofxcofficentsofx2
lα+mα=−qp
⇒α(l+m)=−qp
⇒α=−qp(l+m)......(1)
productofroots=constanttermcofficentofx2
lα.mα=rp
α2=rplm......(2)
By equation (1) and (2) to, we get,
[−qp(l+m)]2=rplm
⇒q2p2(l+m)2=rplm
⇒q2plm=rp2(l+m)2
⇒q2lm=rp(l+m)2
⇒q2lm=rp(l+m)2
⇒q2lm=rp(l2+m2+2lm)
⇒q2lm=rp(l2+m2)+2rplm
⇒q2lm−2rplm=rp(l2+m2)
⇒lm(q2−2pr)=(l2+m2)
⇒(l2+m2)−lm(q2−2pr)=0
⇒(l2+m2)+lm(2pr−q2)=0
Hence, this is the answer.