wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the roots of the equation px2+qx+r=0 are in the ratio = l:m
(l2+m2)pr+lm(2prq2)=0

Open in App
Solution

Consider the given equation

px2+qx+r=0 ratio =l:m

Let lα and mα be the roots given equation

Then, we know that,

sumsofroots=cofficentsofxcofficentsofx2

lα+mα=qp

α(l+m)=qp

α=qp(l+m)......(1)

productofroots=constanttermcofficentofx2

lα.mα=rp

α2=rplm......(2)

By equation (1) and (2) to, we get,

[qp(l+m)]2=rplm

q2p2(l+m)2=rplm

q2plm=rp2(l+m)2

q2lm=rp(l+m)2

q2lm=rp(l+m)2

q2lm=rp(l2+m2+2lm)

q2lm=rp(l2+m2)+2rplm

q2lm2rplm=rp(l2+m2)

lm(q22pr)=(l2+m2)

(l2+m2)lm(q22pr)=0

(l2+m2)+lm(2prq2)=0

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon