The correct option is C (−12,2)
Roots of the equation x2−4x+4−a2=0 would be -
x=4±√16+4(a2−4)2=2±a
Let f1(x)=x2−4x+4−a2 and f2(x)=x2−2(a+2)x+a(a−2)
For f1(x) to have real roots
D≥0
⇒16+4(a2−4)=a2≥0 (always true)
For f2(x) to have real roots
D≥0
⇒4(a+2)2−4a(a−2)≥0⇒a≥−23
Roots of f1(x) lie between the roots of the equation x2−2(a+2)x+a(a−2)=0
⇒f2(2+a)<0 and f2(2−a))<0
⇒(2+a)2−2(a+2)(a+2)+a(a−2)<0⇒a>−23⋯(1)
and
(2−a)2−(a+2)(a−2)+a(a−2)<0
⇒4a2−6a−4<0(2a+1)(a−2)⇒a∈(−12,2)⋯(2)
From (1) & (2) , we get
a∈(−12,2)