If the roots of the equations x2 - bx + c = 0 and x2-cx + b =0 differ by the same quantity, then b + c is equal to
-4
Let the roots are α,β of x2 - bx + c = 0 and α′, β′ be roots of x2 - cx + b = 0
Now α−β=√(α+β)2−4αβ=√b2−4c ..........(i)
and α′−β′=√(α+β)2−4α′β′=√c2−4b .........(ii)
But α−β=α′−β′⇒√b2−4c=√c2−4b⇒b2−4c=c2−4b⇒b2−c2=4c−4b⇒(b+c)(b−c)=4(c−b)⇒b+c=−4