If the roots of the equations x2−bx+c=0 and x2−cx+b=0 differ by the same quantity, then b+c is equal to
-4
Let the roots are α,β of x2−bx+c=0 and α′, β′ be roots of x2−cx+b=0
Now, α−β=√(α+β)2−4αβ=√b2−4c ..........(i)
and α′−β′=√(α+β)2−4α′β′=√c2−4b .........(ii)
But α−β=α′−β′⇒√b2−4c=√c2−4b⇒b2−4c=c2−4b⇒b2−c2=4c−4b⇒(b+c)(b−c)=4(c−b)⇒b+c=−4