If the roots of the equations x3−12x2+39x−28=0 are in A.P., then their common difference will be
Let a−d, a, a+d be the roots of the equation x3−12x2+39x−28=0
Then (a−d)+a+(a+d)=12 and (a−d)a(a−d)=28
⇒ 3a=12 and a(a2−d2)=28
⇒ a=4 and a(a2−d2)=28
⇒ 16−d2=7⇒ d=±3.