If the roots of the quadratic equation p(q−r)x2+q(r−p)x+r(p−q)=0, are equal, then find the value of 2q where p,q,r∈R
1p+1r
Given : p(q−r)x2+q(r−p)x+r(p−q)=0
∵ Roots are equal
∴D=0
⇒D=(q(r−p))2−4(p(q−r))(r(p−q)))=0
⇒q2(r2+p2−2pr)−4((pq−pr)(pr−qr))=0
⇒q2(r2+p2−2pr)−4(p2qr−pq2r−p2r2+pqr2)=0
⇒q2r2+p2q2−2pq2r−4p2qr+4pq2r+4p2r2+4pqr2=0
⇒q2r2+p2q2+4p2r2−4p2qr+2pq2r+4pqr2=0
⇒(pq+qr−2pr)2=0 [(a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
⇒pq+qr=2pr
On dividing by pqr both sides, we get
1r+1p=2q
Or, 2q=1p+1r