If the roots of the quadratic equation x2+px+q=0 are tan 30∘ and tan 15∘, respectively, then the value of 2+q−p is :
x2+px+q=0 has roots tan 30∘ tan 15∘.
∴ tan 30∘+tan 15∘=−p.....(1)
and tan 30∘ tan 15∘=q......(2)
Now tan 45∘=tan(30∘+15∘)
⇒1=tan 30∘+tan 15∘1−tan 30∘ tan 15∘
⇒1=−p1−q [Using(1) and (2)]
⇒1−q=−p⇒q−p=1
⇒2+q−p=3