Given equation x3+3px2+3qx+r=0
Let roots of the equation be α,β,γ
Since the roots are in harmonic progression, 1α+1γ=2β
⇒αβ+βγ=2αγ ....(1)
⇒αβ+βγ+αγ=3q
⇒3αγ=3q[From (1)]
⇒αγ=q .....(2)
αβγ=−r⟹qβ=−r⟹β=−rq[from (2)]
Since β is a root of the given equation, therefore
β3+3pβ2+3qβ+r=0
⇒(−rq)3+3p(−rq)2+3q(−rq)+r=0
⇒−r2+3pqr−3q3+q3
→2q3=3r(pq−r)