The correct option is
A 23Solution:-
x3+3x2+4x−11=0
Here,
A=1,B=3,C=4,D=−11
Given that a,b,c are the roots of the above equation.
Therefore,
Sum of roots =−BA
⇒a+b+c=−31=−3
Sum of the product of roots =CA
⇒ab+bc+ca=41=4
Product of roots =−DA
⇒abc=−(−11)1=11
x3+rx2+sx+t=0
Here,
A=1,B=r,C=s,D=t
Given that (a+b),(b+c),(c+a) are the roots of the above equation.
Therefore,
Sum of the roots =−BA
⇒(a+b)+(b+c)+(c+a)=−r1=−r
Sum of the product of roots =CA
⇒(a+b)(b+c)+(b+c)(c+a)+(c+a)(a+b)=s1=s
Product of the roots =−DA
⇒(a+b)(b+c)(c+a)=−t1=−t
Now, solving for 't', we have
t=−[(a+b)(b+c)(c+a)]
⇒t=−[ab+ac+b2+bc)(c+a]
⇒t=−[a2b+a2c+2abc+ab2+b2c+ac2+bc2]
⇒t=−[a2b+a2c+abc+abc+ab2+b2c+ac2+bc2+abc−abc]
⇒t=−[a(ab+ac+bc)+b(ac+ab+bc)+c(ac+bc+ab)−abc]
⇒t=−[(ab+bc+ca)(a+b+c)−abc]
From eqn(1),(2)&(3), we have
t=−[4×(−3)−11]
t=−(−12−11)=23
Hence the value of 't' is 23.