If the sequence a1,a2,a3,.....,an. forms an A.P., then prove that a21−a22+a23−a24+.....+a22n−1−a22n=n2n−1(a21−a22n).
Open in App
Solution
Given a1,a2,a3 are in AP
Let d be the common difference let d>1
It means that a1−a2=a2−a3=a3−a4=...........a2n−1−a2n=−d
Now let S=a21−a22+a23−a24.....+a22n−1−a22nS=(a1+a2)(a1−a2)+(a3+a4)(a3−a2).......+(a2n−1+a2n)(a2n−1−a2n)S=(a1+a2)(−d)+(a3+a4)(−d)....+(a2n−a+a2n)(−d)S=(−d)[a1+a2+a3+a4+....a2n−1+a2n]S=(−d)[2n2(a1+a2n)]
{Sum of 2n terminal =2n2 first term}
S=(−d)n(a1+a2n)=(−d)[n(a1+a2)]
Since we can write
a1−a2=(a1−a2)+(a2−a3)+....+(a2n−a−a2n)=(2n−1)(−d)
Hence =d=a1−a2n(2n−1) Now replacing −d by a1−a2n2n−1