If the sequence <an> is an A.P., show that am+n+am−n=2am
It is given that the sequence <an> is an A.P.
∴an=a+(n−1)d……(i)
Similarly from (i)
am+n=a+(m+n−1)d……(ii)
am−n=a+(m−n−1)d……(iii)
Adding (ii) and (iii)
am+n+am−n=(a+(m+n−1)d)+(a+(m−n−1)d)
=2a+((m+n−1+m−n−1)d)
=2a+2d(m−1)
=2(a+(m−1)d)
=2am
Hence proved.