The correct option is C H.P
Since, 1a1,1a2,⋯,1an are in A.P.
∴an+an−1+...a2a1+1,an+an−1+...+a1a2+1,.....,an−1+...+a1an+1 are in A.P
∴an+an−1+...a2a1,an+an−1+...+a1a2,....,an−1+...+a1an are in A.P
∴a1a2+a3+⋯+an,a2a1+a3+⋯+an,.....,ana1+a2+⋯+an−1 are in H.P
Ans: B