The correct option is D 3
Let there be two lines →r1=→a1+λ→b1,→r2=→a2+λ→b2
if →b1,→b2 are not collinear
Then
shortest distance between the line would
∣∣∣(→a2−→a1).(→b1×→b2)|→b1×→b2|∣∣∣
Two linesx−33=y−8−1=z−31=t and x+33=y+72=z−64=t
⟹ First line x^i+y^j+z^k=3^i+8^j+3^k+t(3^i−^j+^k)
⟹ Second line x^i+y^j+z^k=−3^i−7^j+6^k+t(3^i+2^j+4^k)
Hence we got →a1=3^i+8^j+3^k,→b1=3^i−^j+^k
→a2=−3^i−7^j+6^k,→b2=3^i+2^j+4^k
So shortest dist is ∣∣∣(→a2−→a1).(→b1×→b2)|→b1×→b2|∣∣∣
Shortest
dist=∣∣∣((−3^i−7^j+6^k)−(3^i+8^j+3^k)).((3^i−^j+^k)×(3^i+2^j+4^k))|(3^i−^j+^k)×(3^i+2^j+4^k)|∣∣∣
Shortest
Dist=∣∣∣(−6^i−15^j+3^k).(−6^i+9^j+9^k)|−6^i+9^j+9^k|∣∣∣=∣∣∣−72√208∣∣∣=∣∣∣18√13∣∣∣