We have →a1=3^i+8^j+3^k
→b1=3^i−^j+^k→a2=−3^i−7^j+6^k→b2=−3^i+2^j+4^k
Now, →a2−→a1=−6^i−15^j+3^k
→b1×→b2=∣∣
∣
∣∣ ^i ^j ^k 3−1 1−3 2 4∣∣
∣
∣∣=−6^i−15^j+3^k
∣∣∣→b1×→b2∣∣∣=√(−6)2+(−15)2+32=√270
and, (→a2−→a1)⋅(→b1×→b2)
=(−6^i−15^j+3^k)⋅(−6^i−15^j+3^k)
=36+225+9=270
Shortest distance =∣∣
∣
∣
∣∣(→a2−→a1)⋅(→b1×→b2)∣∣∣→b1×→b2∣∣∣∣∣
∣
∣
∣∣
=270√270=√270=3√30
⇒3√30=p√30
⇒p=3