The correct option is C 2−π
Given equation of lines
→r=^i+2^j+3^k+λ(2^i+3^j+4^k)
Here, the line passes through A(1,2,3) and n1=2^i+3^j+4^k
→r=2^i+4^j+5^k+μ(3^i+4^j+5^k)
Here, the line passes through B(2,4,5) and n2=3^i+4^j+5^k
Now, →AB=2^i+4^j+5^k−(^i+2^j+3^k)
⇒→AB=^i+2^j+2^k
Now, n1×n2=∣∣
∣
∣∣^i^j^k234345∣∣
∣
∣∣
⇒n1×n2=−^i+2^j−^k
Now, k=∣∣
∣∣−−→AB.(→n1×→n2)|→n1×→n2|∣∣
∣∣
=∣∣∣(^i+2^j+2^k).(−^i+2^j−^k)√6∣∣∣=1√6
⇒k=1√6
∴tan−1tan(2√6k)=tan−1tan2
Since, 2∉(−π2,π2)
So, =tan−1(−tan(π−2))
=2−π (∵tan−1(tanx)=x;x∈(−π2,π2))