The correct option is C 2
Given lines :
L1:2x−2=y−λ=z and L2:x−1=2y=z−λ
⇒L1:x−11=y−λ2=z2,⇒L2:x−12=y1=z−λ2
D.R′s of L1=(a1,b1,c1)=(1,2,2) and D.R′s of L2=(a2,b2,c2)=(2,1,2)
∴ shortest distance =∣∣
∣
∣
∣
∣
∣
∣∣∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣√∑(b1c2−b2c1)2∣∣
∣
∣
∣
∣
∣
∣∣10√17=∣∣
∣
∣
∣
∣
∣
∣∣∣∣
∣∣0−λλ122212∣∣
∣∣√(4−2)2+(2−4)2+(1−4)2∣∣
∣
∣
∣
∣
∣
∣∣⇒|λ(2−4)+λ(1−4)|=10⇒5λ=±10⇒λ=±2