The correct option is
B 4cos2α−β2Let,
a, b, c be the sides of a right angled triangle.
c is the Hypotenuse.
Let,
a=cos2α+cos2β+2cos(α+β)
b=sin2α+sin2β+2sin(α+β)
We know that,
cos2θ=cos2θ−sin2θ
sin2θ=2sinθcosθ
cos(a+b)=cosacosb−sinasinb
sin(a+b)=sinacosb+cosasinb
Consider,
a=cos2α+cos2β+2cos(α+β)
a=cos2α−sin2α+cos2β−sin2β+2(cosαcosβ−sinαsinβ)
a=(cosα+cosβ)2−(sinα+sinβ)2
Consider,
b=sin2α+sin2β+2sin(α+β)
b=2sinαcosα+2sinβcosβ+2(sinαcosβ+cosαsinβ)
b=2(sinα+sinβ)(cosα+cosβ)
From Pythagoras theorem,
c2=a2+b2
c2=((cosα+cosβ)2−(sinα+sinβ)2)2+(2(sinα+sinβ)(cosα+cosβ))2
c2=(cosα+cosβ)4+(sinα+sinβ)4−2(cosα+cosβ)2(sinα+sinβ)2+4(sinα+sinβ)2(cosα+cosβ)2
c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2
c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2
c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2
c2=((cosα+cosβ)2+(sinα+sinβ)2)2
Taking square root on both sides, we get:
c=(cosα+cosβ)2+(sinα+sinβ)2
c=cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ
c=2+2cosαcosβ+2sinαsinβ --------( sin2θ+cos2θ=1 )
c=2(1+cos(α−β))
c=4cos2α−β2
This is the required length of the hypotenuse.