wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sides of a right-angled triangle are {cos2α+cos2β+2cos(α+β)} and {sin2α+sin2b+2sin(α+β)}, then the length of the hypotenuse is:

A
4[1+cos(αβ)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4[1cos(α+β)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4cos2αβ2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4sin2α+β2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 4cos2αβ2
Let, a, b, c be the sides of a right angled triangle. c is the Hypotenuse.

Let,
a=cos2α+cos2β+2cos(α+β)
b=sin2α+sin2β+2sin(α+β)

We know that,
cos2θ=cos2θsin2θ
sin2θ=2sinθcosθ
cos(a+b)=cosacosbsinasinb
sin(a+b)=sinacosb+cosasinb

Consider,

a=cos2α+cos2β+2cos(α+β)

a=cos2αsin2α+cos2βsin2β+2(cosαcosβsinαsinβ)

a=(cosα+cosβ)2(sinα+sinβ)2

Consider,

b=sin2α+sin2β+2sin(α+β)

b=2sinαcosα+2sinβcosβ+2(sinαcosβ+cosαsinβ)

b=2(sinα+sinβ)(cosα+cosβ)


From Pythagoras theorem,

c2=a2+b2

c2=((cosα+cosβ)2(sinα+sinβ)2)2+(2(sinα+sinβ)(cosα+cosβ))2

c2=(cosα+cosβ)4+(sinα+sinβ)42(cosα+cosβ)2(sinα+sinβ)2+4(sinα+sinβ)2(cosα+cosβ)2

c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2

c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2

c2=(cosα+cosβ)4+(sinα+sinβ)4+2(sinα+sinβ)2(cosα+cosβ)2

c2=((cosα+cosβ)2+(sinα+sinβ)2)2

Taking square root on both sides, we get:

c=(cosα+cosβ)2+(sinα+sinβ)2

c=cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ

c=2+2cosαcosβ+2sinαsinβ --------( sin2θ+cos2θ=1 )

c=2(1+cosαcosβ+sinαsinβ)

c=2(1+cos(αβ))

c=4cos2αβ2

This is the required length of the hypotenuse.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon