We are given that A- C =α and 2b=a+c
∴2sinB=sinA+sinC ....(1)
=2sinA+C2cosA−C2
or 4sinB2cosB2=2cosB2cosα2
∴cos2B2=1−sin2B2=1−14cos2α2=1−1+cosα8
or cosB2=√7−cosα2√2 ............(2)
Again ac=sinAsinC. Apply Compo. & divi.
a+ca−c=sinA+sinCsinA−sinC=2sinB2sinA−C2cosA+C2 by (1)
=4sin(B/2)cos(B/2)2sin(B/2)sin(α/2), by given relation
=2√2cos(B/2)√(1−cosα)=√7−cosα1−cosα by (2)
∴a−ca+c=x1, by given relation
Again apply Compo. & Divi.
2a2c=1+x1−x
or a1+x=c1−x=a+c2 or 2b2=b1
or a1+x=b1=c1−x
Hence the sides are in the ratio 1+x: x: 1-x.