The correct option is C 3:5:7
Let the sides be a−d,a,a+d
Perimeter =3a⋯(i).
∴2s=3a
Area of triangle Δ=√s(s−a′)(s−b′)(s−c′)
(where a′,b′,c′ are sides of triangle)
Area of triangle Δ=√3a2(3a2−a+d)(3a2−a)(3a2−a−d)
Δ=√3a2(a2+d)(a2)(a2−d)
Δ=√3a24(a24−d2)⋯(i)
Side of equilateral triangle having perimeter same as equation (i) s′=a
Area of equilateral with same perimeter △E=√3a24⋯(ii)
Area of given triangle=35ΔE
Taking square of both sides
Δ2=925Δ2E
⇒3a24(a24−d2)=925×3a416
⇒a2−4d2=9a225⇒d=2a5
⇒a−d:a:a+d=3a5:a:7a5=3:5:7