If the sides of triangle ABC satisfy the relation a+b−c=2 and 2ab−c2=4, then square of the area of triangle is
Open in App
Solution
Given: a+b−c=2 and 2ab−c2=4 ⇒2ab−4=(a+b−2)2=c2 ⇒2ab−4=a2+b2+4+2ab−4a−4b ⇒a2+b2−4a−4b+8=0 ⇒(a−2)2+(b−2)2=0 ∴a=b=2 ⇒c=2
Equilateral triangle Area Δ=√34×22=√3
Square of the area=Δ2=3