The correct option is B 33:65:−15
Given:sinA:sinB:sinC=3:5:7
∴sides a=3k,b=5k,c=7k
∴cotA=cosAsinA=cosA2△bc
=bccosA2△
=bc[b2+c2−a22bc]2△
=b2+c2−a24△
=(5k)2+(7k)2−(3k)24△=65k24△ .........................(1)
cotB=cosBsinB=cosB2△ac=accosB2△
=c2+a2−b24△
=(7k)2+(3k)2−(5k)24△=33k24△ .........................(2)
cotC=cosCsinC=cosC2△ab
=abcosC2△
=a2+b2−c24△
=(3k)2+(5k)2−(7k)24△=−15k24△ .........................(3)
∴cotA:cotB:cotC from (1),(2) and (3)
cotA:cotB:cotC=65k24△:33k24△:−15k24△
=65:33:−15 (on simplification)