x+ax−by=2
Now differrentiate w.r.to x
xdydx+y+a+bdydx=0
∴(x+b)dydx=−(y+a)
∴dydx=−y+ax+b
Slope of a tangent at (1,1) is 5
∴(dydx)(1,1)=a+1b+1=5
−a−1=5b+5
a+5b=−6....(1)
Also point (1,1)∈xy+ax+by=2
−a−5b=5+1
a+5b=−6....(2)
By solving eqn (1) and (2)
we get a=114,b=−74