dydx=y2xy−x2−y2
Put y=vx we get
v+xdvdx=v2v−1−v2
⇒xdvdx=v2−v2+v+v3v−1−v2
⇒∫v−1−v2v(1+v2)dv=∫dxx
⇒tan−1v−lnv=lnx+C
putting v=yx, we get
tan−1(yx)−ln(yx)=lnx+C
As it passes through (1,1)
C=π4
⇒tan−1(yx)−ln(yx)=lnx+π4
Put y=√3x, we get
⇒π3−ln√3=lnx+π4
⇒lnx=π12−ln√3=lnα
Now, ln(√3α)=ln√3+lnα
=ln√3+π12−ln√3=π12