y=Axm+Bx−n
⇒dydx=Amxm−1−nBx−n−1
⇒d2ydx2=Am(m−1)xm−2+n(n+1)Bx−n−2
Putting these values in x2d2ydx2+2xdydx=12y
We get, Am(m−1)xm+n(n+1)Bx−n+2Amxm−2nBx−n=12(Axm+Bx−n)
⇒m(m+1)Axm+n(n−1)Bx−n=12(Axm+Bx−n)
⇒m(m+1)=12 or n(n−1)=12
⇒m=3, −4 or n=4, −3
⇒m+n=3+4=7