Given : xdx−ydy=x√x2−y2(xdy−ydx)
put x=rsecθ,y=rtanθ
⇒x2−y2=r2,xdx−ydy=rdr,xdy−ydx=r2secθdθ
The equation becomes,
rdr=rsecθr(r2secθ)dθ⇒drr=sec2θdθ
integrating both sides we get,
ln|r|=tanθ+c⇒√x2−y2=key/√x2−y2
where k is arbitrary constant,
now at point (1,0):
⇒k=1