The correct option is B -2
We have, dydx=ax+32y+f⇒ (ax+3)dx=(2y+f)dy
On intergrating, we obtain
ax22+3x=y2+fy+c⇒−a2x2+y2−3x+fy+c=0
This will represent a circle, if
−a2=1 [∵Coeff. of x2=Coeff. of y2]and, 94+f24−c>0 [Using g2+f24−c>0]⇒ a=−2 and 9+f2−4c>0