The correct option is B 2π(p+q)
cos(pθ)=−cos(qθ)
Or
cos(pθ)=cos(π±qθ)
Or
pθ=π±qθ
Or
pθ=(2n−1)π+qθ and pθ=(2n−1)π−qθ.
Hence
θ=(2n−1)πp−q ...(i) and θ=(2n−1)πp+q where nϵN
Hence
θ′2(s)=πp−q,3πp−q,5πp−q...
And
θ′1(s)=πp+q,3πp+q,5πp+q...
Now
p>q>0
Hence
p−q<p+q.
Hence θ′1s have a lesser magnitude.
Thus minimum difference of the A.P is
=(2(n+1)−1)πp+q−(2n−1)πp+q
=πp+q[2n+1−2n+1]
=2πp+q.