The correct options are
A a>1,b>0
C a<1,b<0
xy=1
Differentiating both sides w.r.t. x, we get
xdydx+y=0
⇒dydx=−yx
Therefore, slope of tangent =−yx
Given the equation of normal :
by=(a−1)x+4
⇒y=(a−1)bx+4b
Slope of normal =a−1b
So, (−yx)(a−1b)=−1<0
As xy=1
Thus, yx cannot be negative.
Thus, a−1<0,b<0
⇒a<1, b<0
or a−1>0, b>0
⇒a>1, b>0