If the straight line ax+by=2; a,b ≠0 touches the circle x2+y2−2x=3 and is normal to the circle x2+y2−4y=6, then the values of a and b are
Given ax+by=2 is tangent
to x2+y2−2x−3=0
so, r=√4=|a−2√a2+b2|
4(a2+b2)=(a−2)2 ---{1}
and , ax+by=2 is also normal to
x2+y2−4y−6=0
so, ax+by=2 passes through (0,2) center of circle.
b×2=2
b=1
so from (1) , 4a2+4=(a−2)2
4a2+4=a2−4a+4
3a2=−4a
a=−43 [Given a,b≠0]
so,a=−43 and b=1