The correct option is
A 2Given lines: ax+by+p=0 m1=−ab
xcosα+ysinα=p m2=−cosαsinα
Both lines enclose an angle of 45∘, Thus,
tan45∘=|m1−m2||1+m1m2|
⇒|1+m1m2|=|m1−m2|
⇒|bsinα+acosα|=|asinα−bcosα|
Now, squaring both sides we get:
b2sin2A+a2cos2A+2absinAcosA=a2sin2A+b2cos2A−2absinAcosA →⟨1⟩
Also, given that 3 lines are concurrent(meets at same point).
Point of intersection of line: xcosα+ysinα=p & xsinα−ycosα=0 is:
⇒(pcosα,psinα)
As line ax+by+p=0 also passes through this point so,
a(pcosα)+b(psinα)=−p
acosα+bsinα=−1
Squaring both sides, we get:
b2sin2A+a2cos2A+2absinAcosA=1 →⟨2⟩
Now, Using ⟨2⟩in⟨1⟩ we get:
a2sin2A+b2cos2A−2absinAcosA=1 →⟨3⟩
Adding ⟨2⟩ & ⟨3⟩:
a2+b2=2
Hence, Option (C) is correct.